LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation Vladan Stojnić, Yannis Kalantidis, Jiří Matas, Giorgos Tolias

PR&CV Colloquium, April 10, 2025

Image

2

Image

Class names as text: cows, grass, trees, sky, box \bullet

Image

• Class names as text: cows, grass, trees, sky, box

Image

Class names as text: cows, grass, trees, sky, box, car, people \bullet

Image

- Class names as text: cows, grass, trees, sky, box, car, people
- Open-vocabulary (zero-shot) vs open-set

Image

- Class names as text: cows, grass, trees, sky, box, car, people other (or background)
- Open-vocabulary (zero-shot) vs open-set

Use of VLMs

- VLMs, e.g. CLIP [1], excel in open-vocabulary tasks
 - Zero-shot classification
 - Text2image and image2text retrieval

[1] Alec Radford, Jong Wook Kim, Chris Hallacy, et.al. Learning transferable visual models from natural language supervision. In ICML, 2021.

11

- Out of the box does not work well
 - Trained only with the global objective

[1] Chong Zhou, Chen Change Loy, and Bo Dai. Extract free dense labels from CLIP. In ECCV, 2022. [2] Walid Bousselham, Felix Petersen, Vittorio Ferrari, and Hilde Kuehne. Grounding everything: Emerging localization properties in vision-language transformers. In CVPR, 2024. [3] Feng Wang, Jieru Mei, and Alan Yuille. SCLIP: Rethinking self-attention for dense vision-language inference. In ECCV, 2024. [4] Mengcheng Lan, Chaofeng Chen, Yiping Ke, et. al.. ClearCLIP: Decomposing clip representations for dense vision-language inference. In ECCV, 2024.

- Out of the box does not work well
 - Trained only with the global objective
- A lot of work on slightly modifying the ViT architecture during inference:
 - MaskCLIP [1]
 - ► GEM [2]
 - ► SCLIP [3]
 - ClearCLIP [4]

[1] Chong Zhou, Chen Change Loy, and Bo Dai. Extract free dense labels from CLIP. In ECCV, 2022. [2] Walid Bousselham, Felix Petersen, Vittorio Ferrari, and Hilde Kuehne. Grounding everything: Emerging localization properties in vision-language transformers. In CVPR, 2024. [3] Feng Wang, Jieru Mei, and Alan Yuille. SCLIP: Rethinking self-attention for dense vision-language inference. In ECCV, 2024. [4] Mengcheng Lan, Chaofeng Chen, Yiping Ke, et. al.. ClearCLIP: Decomposing clip representations for dense vision-language inference. In ECCV, 2024.

Image

GT

MaskCLIP

mloU: 27.0% (average over 8 datasets)

Can we improve using classical segmentation approaches?

- Can we improve using classical segmentation approaches?
 - Respect initial VLM predictions Y_i

- Can we improve using classical segmentation approaches?
 - Respect initial VLM predictions Y_i
 - Predict the same label for nearby patches

 $Q(\hat{Y}) = \sum_{i=1}^{N} f(\hat{Y}_{i}, Y_{i}) + \sum_{i=1}^{N} g(\hat{Y}_{i}, \hat{Y}_{j})$ (*i*,*j*)∈near

- Can we improve using classical segmentation approaches?
 - Respect initial VLM predictions Y_i
 - Predict the same label for nearby patches
- We pick $f(u, v) \sim g(u, v) = ||u v||^2$

$$Q(\hat{Y}) = \sum_{i=1}^{N} f(\hat{Y}_i)$$

- Can we improve using classical segmentation approaches?
 - Respect initial VLM predictions Y_i
 - Predict the same label for nearby patches
- We pick $f(u, v) \sim g(u, v) = ||u v||^2$
- Label propagation solves such a problem

$$Q(\hat{Y}) = (1 - \alpha) \sum_{i=1}^{N} \|\hat{Y}_i - Y_i\|$$

- Can we improve using classical segmentation approaches?
 - Respect initial VLM predictions Y_i
 - Predict the same label for nearby patches
- We pick $f(u, v) \sim g(u, v) = ||u v||^2$
- Label propagation solves such a problem

$$Q(\hat{Y}) = (1 - \alpha) \sum_{i=1}^{N} \|\hat{Y}_i - Y_i\|$$

- Can we improve using classical segmentation approaches?
 - Respect initial VLM predictions Y_i
 - Predict the same label for nearby patches
- adjacency matrix Label propagation solves such a problem - symmetric - zero diagonal - typically very sparse $Y_i \|^2 + \alpha \sum_{i,j=1}^{N} S_{ij} \left\| \frac{1}{\sqrt{d_i}} - \frac{1}{\sqrt{d_i}} \right\|$ $\Rightarrow \text{ degree } d_j = \sum_{k=1}^N S_{jk}$
- We pick $f(u, v) \sim g(u, v) = ||u v||^2$

$$Q(\hat{Y}) = (1 - \alpha) \sum_{i=1}^{N} \|\hat{Y}_i - Y_i\|$$

- Can we improve using classical segmentation approaches?
 - Respect initial VLM predictions Y_i
 - Predict the same label for nearby patches
- adjacency matrix Label propagation solves such a problem - symmetric - zero diagonal - typically very sparse propagation hyper-parameter N $Q(\hat{Y}) = (1 - \alpha) \sum_{i=1}^{\infty} \|\hat{Y}_i - Y_i\|^2 + \alpha \sum_{i,j=1}^{\infty} S_{ij} \|\frac{Y_i}{\sqrt{d_i}}\|$ • degree $d_j = \sum S_{jk}$ k=1
- We pick $f(u, v) \sim g(u, v) = ||u v||^2$

• How to construct *S*?

S =

- How to construct S?
 - Appearance-based adjacency S_a
 - kNN graph based on test image patch features

- How to construct S?
 - Appearance-based adjacency S_{a}
 - kNN graph based on test image patch features
 - Spatial-based adjacency S_p
 - Depends on the distance between patches

 $S = S_a \odot S_p$ Hadamard product

Image

GT

MaskCLIP

mloU: 27.0% mloU: 38.3% (average over 8 datasets)

- appearance-based adjacency S_a is based on VLM features

- appearance-based adjacency S_a is based on VLM features
- SSL vision models (VMs), e.g. DINO, have good localization properties

- appearance-based adjacency S_{α} is based on VLM features
- SSL vision models (VMs), e.g. DINO, have good localization properties

• Use VM features for appearance-based adjacency S_{α}

[1] Monika Wysoczanska, Oriane Simeoni, Michael Ramamonjisoa, et.al. CLIP-DINOiser: Teaching clip a few dino tricks for open-vocabulary semantic segmentation. In ECCV, 2024. [2] Mengcheng Lan, Chaofeng Chen, Yiping Ke, et.al. ProxyCLIP: Proxy attention improves clip for open-vocabulary segmentation. In ECCV, 2024. [3] Dahyun Kang and Minsu Cho. In defense of lazy visual grounding for open-vocabulary semantic segmentation. In ECCV, 2024.

Image

GT

mloU: 27.0%

MaskCLIP LPOSS (VLM aff.) LPOSS (VM aff.)

mloU: 41.3% mloU: 38.3% (average over 8 datasets)

Energy minimization MRFs, CRFs, etc.

Classic semantic segmentation Train on a closed set of classes with labeled images

time

Energy minimization MRFs, CRFs, etc.

Classic semantic segmentation Train on a closed set of classes with labeled images

time

CNN-based approaches

Energy minimization MRFs, CRFs, etc.

Classic semantic segmentation Train on a closed set of classes with labeled images

time

CNN-based approaches

 Q_{vit}^{seg}

Energy minimization MRFs, CRFs, etc.

Classic semantic segmentation Train on a closed set of classes with labeled images

Open-vocabulary semantic segmentation Zero-shot evaluation on class names given as text

time

Limitation of patch level prediction

Predictions are on the level of patches

Limitation of patch level prediction

Predictions are on the level of patches
Image
GT
LPOSS

Limitation of patch level prediction

Predictions are on the level of patches
Image
GT
LPOSS

mloU: 85.2% Boundary loU [1]: 69.5% (average over 8 datasets)

[1] Bowen Cheng, Ross Girshick, Piotr Dollar, et.al. Boundary IoU: Improving object-centric image segmentation evaluation. In CVPR, 2021.

 Predictions are on the level of patches GT Image

Apply another label propagation to refine predictions on the pixel level

$$Q(\hat{Y}) = (1 - \alpha) \sum_{i=1}^{N} \|\hat{Y}_i - Y_i\|$$

 Predictions are on the level of patches Image GT

Apply another label propagation to refine predictions on the pixel level

initialize using LPOSS predictions

$$Q(\hat{Y}) = (1 - \alpha) \sum_{i=1}^{N} \|\hat{Y}_{i} - (Y_{i})\|_{i=1}^{N}$$

 Predictions are on the level of patches Image GT

Apply another label propagation to refine predictions on the pixel level

initialize using LPOSS predictions

$$Q(\hat{Y}) = (1 - \alpha) \sum_{i=1}^{N} \|\hat{Y}_{i} - (Y_{i})\|_{i=1}^{N}$$

• Predictions are on the level of patches Image GT

Apply another label propagation to refine predictions on the pixel level

initialize using LPOSS predictions

$$Q(\hat{Y}) = (1 - \alpha) \left(\sum_{i=1}^{N} \| \hat{Y}_i - (Y_i) \right)$$

LPOSS+

 Predictions are on the level of patches Image GT

mloU: 41.3% mloU: 42.1% Boundary IoU: 30.3% Boundary IoU: 32.1%

(average over 8 datasets)

LPOSS

Models trained with fixed squared resolution

- Models trained with fixed squared resolution
- During inference lacksquare
 - Different aspect ratio

- Models trained with fixed squared resolution
- During inference •
 - Different aspect ratio
 - Different resolution different number of tokens

Image

GT

MaskCLIP

CLIP-DINOiser

ProxyCLIP

LaVG

LPOSS+

• Training free methods

- Training free methods
 - Hand designed on top of VLMs
 - MaskCLIP, LPOSS, etc.

- Training free methods
 - Hand designed on top of VLMs
 - MaskCLIP, LPOSS, etc.
- Training on pixel-level annotations, but keep open-vocabulary ability

[1] Seokju Cho, Heeseong Shin, Sunghwan Hong, et.al. CAT-Seg: Cost Aggregation for Open-Vocabulary Semantic Segmentation. In CVPR, 2024.

[2] Bin Xie, Jiale Cao, Jin Xie, et.al. SED: A Simple Encoder-Decoder for Open-Vocabulary Semantic Segmentation. In CVPR, 2024.

- Training free methods
 - Hand designed on top of VLMs
 - MaskCLIP, LPOSS, etc.
- Training on pixel-level annotations, but keep open-vocabulary ability
 - Fine-tune VLMs and train additional blocks on top
 - ► CAT-Seg [1], SED [2], etc.

[1] Seokju Cho, Heeseong Shin, Sunghwan Hong, et.al. CAT-Seg: Cost Aggregation for Open-Vocabulary Semantic Segmentation. In CVPR, 2024.

[2] Bin Xie, Jiale Cao, Jin Xie, et.al. SED: A Simple Encoder-Decoder for Open-Vocabulary Semantic Segmentation. In CVPR, 2024.

but keep open-vocabulary ability nal blocks on top

Evaluation

- Training on COCO (Stuff, Panoptic, ...)
- Standard test sets
 - PASCAL (VOC and Context)
 - ADE20k
 - Cityscapes

Evaluation

- Training on COCO (Stuff, Panoptic, ...)
- Standard test sets
 - PASCAL (VOC and Context)
 - ADE20k
 - Cityscapes
- Potentially a large overlap with classes used in training

MESS benchmark [1]

[1] Benedikt Blumenstiel, Johannes Jakubik, Hilde Kuhne, Michael Vossing. What a MESS: Multi-Domain Evaluation of Zero-Shot Semantic Segmentation. In NeurIPS, 2023.

Results

Averaged over 3 standard datasets Close to the training set distribution

Results

Averaged over 3 standard datasets Close to the training set distribution

Averaged over 22 MESS datasets Very diverse test sets

