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• Open-vocabulary (zero-shot) vs open-set

• Segmentation
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Use of VLMs
• VLMs, e.g. CLIP [1], excel in open-vocabulary tasks


‣ Zero-shot classification


‣ Text2image and image2text retrieval

[1] Alec Radford, Jong Wook Kim, Chris Hallacy, et.al. Learning transferable visual models from natural language supervision. In ICML, 2021.
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Use of VLMs for semantic segmentation
• Out of the box does not work well


‣ Trained only with the global objective 

[1] Chong Zhou, Chen Change Loy, and Bo Dai. Extract free dense labels from CLIP. In ECCV, 2022.


[2] Walid Bousselham, Felix Petersen, Vittorio Ferrari, and Hilde Kuehne. Grounding everything: Emerging localization properties in vision-language transformers. In CVPR, 2024.


[3] Feng Wang, Jieru Mei, and Alan Yuille. SCLIP: Rethinking self-attention for dense vision-language inference. In ECCV, 2024.


[4] Mengcheng Lan, Chaofeng Chen, Yiping Ke, et. al.. ClearCLIP: Decomposing clip representations for dense vision-language inference. In ECCV, 2024. 14



Use of VLMs for semantic segmentation
• Out of the box does not work well


‣ Trained only with the global objective


• A lot of work on slightly modifying the ViT architecture during inference:


‣ MaskCLIP [1]

‣ GEM [2]

‣ SCLIP [3]

‣ ClearCLIP [4]

[1] Chong Zhou, Chen Change Loy, and Bo Dai. Extract free dense labels from CLIP. In ECCV, 2022.


[2] Walid Bousselham, Felix Petersen, Vittorio Ferrari, and Hilde Kuehne. Grounding everything: Emerging localization properties in vision-language transformers. In CVPR, 2024.


[3] Feng Wang, Jieru Mei, and Alan Yuille. SCLIP: Rethinking self-attention for dense vision-language inference. In ECCV, 2024.


[4] Mengcheng Lan, Chaofeng Chen, Yiping Ke, et. al.. ClearCLIP: Decomposing clip representations for dense vision-language inference. In ECCV, 2024. 15



Use of VLMs for semantic segmentation
Image GT MaskCLIP

mIoU: 27.0%

(average over 8 datasets) 16
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‣ Respect initial VLM predictions 


‣ Predict the same label for nearby patches
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• Label propagation solves such a problem
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LPOSS - adjacency S
• How to construct ?


‣ Appearance-based adjacency 


- kNN graph based on test image patch features


‣ Spatial-based adjacency 


- Depends on the distance between patches

S

Sa

Sp

S = Sa ⊙ Sp

Hadamard product
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LPOSS
Image GT MaskCLIP LPOSS

mIoU: 27.0%
(average over 8 datasets)

mIoU: 38.3%
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LPOSS - adjacency S
• appearance-based adjacency  is based on VLM features


• SSL vision models (VMs), e.g. DINO, have good localization properties


• Use VM features for appearance-based adjacency 

Sa

Sa
[1] Monika Wysoczanska, Oriane Simeoni, Michael Ramamonjisoa, et.al. CLIP-DINOiser: Teaching clip a few dino tricks for open-vocabulary semantic segmentation. In ECCV, 2024.


[2] Mengcheng Lan, Chaofeng Chen, Yiping Ke, et.al. ProxyCLIP: Proxy attention improves clip for open-vocabulary segmentation. In ECCV, 2024.


[3] Dahyun Kang and Minsu Cho. In defense of lazy visual grounding for open-vocabulary semantic segmentation. In ECCV, 2024. 31
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LPOSS
Image GT MaskCLIP LPOSS (VLM aff.)LPOSS (VM aff.)

mIoU: 27.0%
(average over 8 datasets)

mIoU: 38.3% mIoU: 41.3%
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Limitation of patch level prediction
• Predictions are on the level of patches

GT

up

down

Image LPOSS

mIoU: 85.2%

Boundary IoU [1]: 69.5%

(average over 8 datasets)

[1] Bowen Cheng, Ross Girshick, Piotr Dollar, et.al. Boundary IoU: Improving object-centric image segmentation evaluation. In CVPR, 2021.
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LPOSS+
• Predictions are on the level of patches


• Apply another label propagation to refine predictions on the pixel level
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LPOSS+
• Predictions are on the level of patches


• Apply another label propagation to refine predictions on the pixel level

GTImage LPOSS
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LPOSS+
• Predictions are on the level of patches

GTImage LPOSS LPOSS+

(average over 8 datasets)

mIoU: 41.3% 
Boundary IoU: 30.3%

mIoU: 42.1% 
Boundary IoU: 32.1%
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Sliding window inference
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Sliding window inference
• Models trained with fixed squared resolution


• During inference


‣ Different aspect ratio


‣ Different resolution - different number of tokens
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Results
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Approaches

• Training free methods


‣ Hand designed on top of VLMs


‣ MaskCLIP, LPOSS, etc.


• Training on pixel-level annotations, but keep open-vocabulary ability

[1] Seokju Cho, Heeseong Shin, Sunghwan Hong, et.al. CAT-Seg: Cost Aggregation for Open-Vocabulary Semantic Segmentation. In CVPR, 2024.


[2] Bin Xie, Jiale Cao, Jin Xie, et.al. SED: A Simple Encoder-Decoder for Open-Vocabulary Semantic Segmentation. In CVPR, 2024.
70



Approaches

• Training free methods


‣ Hand designed on top of VLMs


‣ MaskCLIP, LPOSS, etc.


• Training on pixel-level annotations, but keep open-vocabulary ability


‣ Fine-tune VLMs and train additional blocks on top


‣ CAT-Seg [1], SED [2], etc.

[1] Seokju Cho, Heeseong Shin, Sunghwan Hong, et.al. CAT-Seg: Cost Aggregation for Open-Vocabulary Semantic Segmentation. In CVPR, 2024.


[2] Bin Xie, Jiale Cao, Jin Xie, et.al. SED: A Simple Encoder-Decoder for Open-Vocabulary Semantic Segmentation. In CVPR, 2024.
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Evaluation

• Training on COCO (Stuff, Panoptic, …)


• Standard test sets


‣ PASCAL (VOC and Context)
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‣ Cityscapes
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Evaluation

• Training on COCO (Stuff, Panoptic, …)


• Standard test sets


‣ PASCAL (VOC and Context)


‣ ADE20k


‣ Cityscapes


• Potentially a large overlap with classes used in training
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MESS benchmark [1]

[1] Benedikt Blumenstiel, Johannes Jakubik, Hilde Kuhne, Michael Vossing. What a MESS: Multi-Domain Evaluation of Zero-Shot Semantic Segmentation. In NeurIPS, 2023.
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Averaged over 22 MESS datasets 
Very diverse test sets

76

Averaged over 3 standard datasets 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Demo
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